

WalkingBetweenWorlds
Smart Contract Review

Deliverable: Smart Contract Audit Report

Security Report

February 2022

Smart Contract Audit

Disclaimer

The information and views set out in this publication are those of the author(s) and do not necessarily

reflect the official opinion of the Company. The content, conclusions and recommendations set out

in this publication are elaborated in the specific for only project.

eNebula Solutions does not guarantee the authenticity of the project or organization or team of

members that is connected/owner behind the project or nor accuracy of the data included in this study.

All representations, warranties, undertakings and guarantees relating to the report are excluded,

particularly concerning – but not limited to – the qualities of the assessed projects and products.

Neither the Company nor any personating on the Company’s behalf may be held responsible for the use

that may be made of the information contained herein.

eNebula Solutions retains the right to display audit reports and other content elements as examples of

their work in their portfolio and as content features in other projects with protecting all security purpose

of customer. The report containing confidential information can be used internally by the Customer, or

it can be disclosed publicly after all vulnerabilities fixed - upon a decision of the Customer.

© eNebula Solutions, 2021-2022.

Smart Contract Audit

Report Summary

Title WALKINGBETWEENWORLDS Smart Contract Audit

Project Owner WALKINGBETWEENWORLDS

Type Public

Reviewed by Vatsal Raychura Revision date 19/02/2022

Approved by eNebula Solutions Private
Limited

Approval date 19/02/2022

Nº Pages 24

Smart Contract Audit

Overview

Background

WALKINGBETWEENWORLDS’s team requested that eNebula Solutions perform an

Extensive Smart Contract audit of their Smart Contract.

Project Dates

The following is the project schedule for this review and report:

● February 19: Smart Contract Review Completed (Completed)

● February 19: Delivery of Smart Contract Audit Report (Completed)

Review Team

The following eNebula Solutions team member participated in this review:

● Sejal Barad, Security Researcher and Engineer
● Vatsal Raychura, Security Researcher and Engineer

Coverage

Target Specification and Revision

For this audit, we performed research, investigation, and review of the smart

contract of WALKINGBETWEENWORLDS.

The following documentation repositories were considered in-scope for the review:

● WALKINGBETWEENWORLDS Project:
https://rinkeby.etherscan.io/address/0x9991961E47b2dC25C998f4e911599F912dF5454
a#code

https://rinkeby.etherscan.io/address/0x9991961E47b2dC25C998f4e911599F912dF5454a#code
https://rinkeby.etherscan.io/address/0x9991961E47b2dC25C998f4e911599F912dF5454a#code

Smart Contract Audit

Introduction

Given the opportunity to review WALKINGBETWEENWORLDS Project’s smart

contract source code, we in the report outline our systematic approach to evaluate

potential security issues in the smart contract implementation, expose possible

semantic inconsistencies between smart contract code and design document, and

provide additional suggestions or recommendations for improvement. Our results

show that the given version of smart contracts is ready to launch after resolving the

mentioned issues, there are no critical or high issues found related to business logic,

security or performance.

About WALKINGBETWEENWORLDS: -

Item

Description

Issuer WALKINGBETWEENWORLDS

Website https://www.walkingbetwee
nworlds.net/

Type ERC721

Platform Solidity

Audit Method Whitebox

Latest Audit Report February 19, 2022

The Test Method Information: -

Test method

Description

Black box testing Conduct security tests from an attacker's perspective externally.

Grey box testing Conduct security testing on code modules through the scripting
tool, observing the internal running status, mining weaknesses.

White box testing Based on the open-source code, non-open-source code, to detect
whether there are vulnerabilities in programs such as nodes, SDK,
etc.

https://www.walkingbetweenworlds.net/
https://www.walkingbetweenworlds.net/

Smart Contract Audit

The vulnerability severity level information:

Level

Description

Critical Critical severity vulnerabilities will have a significant effect on the

security of the DeFi project, and it is strongly recommended to fix the

critical vulnerabilities.

High High severity vulnerabilities will affect the normal operation of the DeFi

project. It is strongly recommended to fix high-risk vulnerabilities.

Medium Medium severity vulnerability will affect the operation of the DeFi

project. It is recommended to fix medium-risk vulnerabilities.

Low Low severity vulnerabilities may affect the operation of the DeFi project

in certain scenarios. It is suggested that the project party should

evaluate and consider whether these vulnerabilities need to be fixed.

Weakness There are safety risks theoretically, but it is extremely difficult to

reproduce in engineering.

The Full List of Check Items:

Category

Check Item

Basic Coding Bugs

Constructor Mismatch

Ownership Takeover

Redundant Fallback Function

Overflows & Underflows

Reentrancy

MONEY-Giving Bug

Blackhole

Unauthorized Self-Destruct

Revert DoS

Unchecked External Call

Gasless Send

Send Instead of Transfer

Costly Loop

(Unsafe) Use of Untrusted Libraries

(Unsafe) Use of Predictable Variables

Transaction Ordering Dependence

Deprecated Uses

Semantic Consistency Checks Semantic Consistency Checks

 Business Logics Review

Smart Contract Audit

Advanced DeFi Scrutiny

Functionality Checks

Authentication Management

Access Control & Authorization

Oracle Security

Digital Asset Escrow

Kill-Switch Mechanism

Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling

Frontend-Contract Integration

Deployment Consistency

Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array

Using Fixed Compiler Version

Making Visibility Level Explicit

Making Type Inference Explicit

Adhering To Function Declaration
Strictly
Following Other Best Practices

Common Weakness Enumeration (CWE) Classifications Used in This Audit:

Category

Summary

Configuration Weaknesses in this category are typically introduced during
the configuration of the software.

Data Processing Issues Weaknesses in this category are typically found in
functionality that processes data.

Numeric Errors Weaknesses in this category are related to improper
calculation or conversion of numbers.

Security Features Weaknesses in this category are concerned with topics like
authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper
management of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions, Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code, or
if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper
management of system resources.

Smart Contract Audit

Behavioral Issues Weaknesses in this category are related to unexpected
behaviors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex
pilotable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

Smart Contract Audit

Findings

Summary

Here is a summary of our findings after analyzing the

WALKINGBETWEENWORLDS’s Smart Contract. During the first phase of our

audit, we studied the smart contract source code and ran our in-house static code

analyzer through the Specific tool. The purpose here is to statically identify known

coding bugs, and then manually verify (reject or confirm) issues reported by tool.

We further manually review business logics, examine system operations, and

place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or

bugs.

Severity

No. of Issues

Critical 0

High 0

Medium 0

Low 2

Total 2

We have so far identified that there are potential issues with severity of 0 Critical,
0 High, 0 Medium, and 2 Low. Overall, these smart contracts are well- designed
and engineered.

Smart Contract Audit

Functional Overview

($) = payable function

= non-constant function

[Pub] public

[Ext] external

[Prv] private

[Int] internal

+ WalkingBetweenWorlds (ERC721, ContextMixin, ERC721Enumerable,
ReentrancyGuard, ERC721URIStorage, ERC721Burnable, Ownable)

 - [Pub] <Constructor> #

 - modifiers: ERC721

 - [Ext] pauseMinting #

 - modifiers: onlyOwner

 - [Ext] setMintPrice #

 - modifiers: onlyOwner

 - [Ext] setMintLimit #

 - modifiers: onlyOwner

 - [Ext] addToVipList #

 - modifiers: onlyOwner

 - [Ext] removeFromVipList #

 - modifiers: onlyOwner

 - [Pub] isOnVipList

 - [Pub] totalMintedVip

 - [Ext] setMaxVipListSize #

 - modifiers: onlyOwner

 - [Ext] setVipPhase #

 - modifiers: onlyOwner

 - [Ext] setVipPhaseWithOptions #

 - modifiers: onlyOwner

 - [Pub] isVipPhase

Smart Contract Audit

 - [Ext] setTokensPerVipMint #

 - modifiers: onlyOwner

 - [Ext] vipMint ($)

 - modifiers: nonReentrant

 - [Ext] addToPresaleList #

 - modifiers: onlyOwner

 - [Ext] removeFromPresaleList #

 - modifiers: onlyOwner

 - [Pub] isOnPresaleList

 - [Pub] totalMintedPresale

 - [Ext] setPresalePhase #

 - modifiers: onlyOwner

 - [Ext] setPresalePhaseWithOptions #

 - modifiers: onlyOwner

 - [Pub] isPresalePhase

 - [Ext] presaleMint ($)

 - modifiers: nonReentrant

 - [Pub] totalMintedPublic

 - [Ext] setPublicPhase #

 - modifiers: onlyOwner

 - [Ext] setPublicPhaseWithOptions #

 - modifiers: onlyOwner

 - [Pub] isPublicPhase

 - [Ext] mint ($)

 - modifiers: nonReentrant

 - [Ext] setTotalReserved #

 - modifiers: onlyOwner

 - [Ext] freeMint #

 - modifiers: nonReentrant,onlyOwner

 - [Ext] setWithdrawAddress #

 - modifiers: onlyOwner

Smart Contract Audit

 - [Ext] withdrawAmount #

 - modifiers: onlyOwner

 - [Ext] withdrawAll #

 - modifiers: onlyOwner

 - [Pub] updateTokenURI #

 - modifiers: onlyOwner

 - [Ext] batchUpdateTokenURI #

 - modifiers: onlyOwner

 - [Int] _setTokenURI #

 - [Int] _beforeTokenTransfer #

 - [Int] _burn #

 - [Pub] balanceOf

 - [Pub] ownerOf

 - [Pub] tokenURI

 - [Pub] supportsInterface

 - [Pub] isApprovedForAll

 - [Int] _msgSender

Smart Contract Audit

Detailed Results

Issues Checking Status

1. Floating Pragma

• SWC ID: 103
• Severity: Low
• Location: WalkingBetweenWorlds.sol
• Relationships: CWE-664: Improper Control of a Resource Through its Lifetime
• Description: A floating pragma is set. The current pragma Solidity directive is

""^0.8.0"". It is recommended to specify a fixed compiler version to ensure that
the bytecode produced does not vary between builds. This is especially
important if you rely on bytecode-level verification of the code.

• Remediations: Lock the pragma version and also consider known bugs
(https://github.com/ethereum/solidity/releases) for the compiler version
that is chosen.

Smart Contract Audit

2. State Variable Default Visibility

• SWC ID: 108
• Severity: Low
• Location: WalkingBetweenWorlds.sol
• Relationships: CWE-710: Improper Adherence to Coding Standards
• Description: State variable visibility is not set. It is best practice to set the

visibility of state variables explicitly. The default visibility for "_currentPhase"
is internal. Other possible visibility settings are public and private.

• Remediations: Variables can be specified as being public, internal or private.
Explicitly define visibility for all state variables.

Smart Contract Audit

Automated Tools Results

Slither: -

Smart Contract Audit

Smart Contract Audit

MythX: -

Smart Contract Audit

Solhint: -

Smart Contract Audit

Smart Contract Audit

Basic Coding Bugs

1. Constructor Mismatch

o Description: Whether the contract name and its constructor are not

identical to each other.
o Result: PASSED
o Severity: Critical

2. Ownership Takeover

o Description: Whether the set owner function is not protected.
o Result: PASSED
o Severity: Critical

3. Redundant Fallback Function

o Description: Whether the contract has a redundant fallback function.
o Result: PASSED
o Severity: Critical

4. Overflows & Underflows

o Description: Whether the contract has general overflow or underflow

vulnerabilities
o Result: PASSED
o Severity: Critical

5. Reentrancy

o Description: Reentrancy is an issue when code can call back into your

contract and change state, such as withdrawing ETHs.
o Result: PASSED
o Severity: Critical

6. MONEY-Giving Bug

o Description: Whether the contract returns funds to an arbitrary

address.
o Result: PASSED
o Severity: High

Smart Contract Audit

7. Blackhole

o Description: Whether the contract locks ETH indefinitely: merely in
without out.

o Result: PASSED
o Severity: High

8. Unauthorized Self-Destruct

o Description: Whether the contract can be killed by any arbitrary

address.
o Result: PASSED
o Severity: Medium

9. Revert DoS

o Description: Whether the contract is vulnerable to DoS attack because

of unexpected revert.
o Result: PASSED
o Severity: Medium

10. Unchecked External Call

o Description: Whether the contract has any external call without

checking the return value.
o Result: PASSED
o Severity: Medium

11. Gasless Send

o Description: Whether the contract is vulnerable to gasless send.
o Result: PASSED
o Severity: Medium

12. Send Instead of Transfer

o Description: Whether the contract uses send instead of transfer.
o Result: PASSED
o Severity: Medium

Smart Contract Audit

13. Costly Loop

o Description: Whether the contract has any costly loop which may lead
to Out-Of-Gas exception.

o Result: PASSED
o Severity: Medium

14. (Unsafe) Use of Untrusted Libraries

o Description: Whether the contract use any suspicious libraries.
o Result: PASSED
o Severity: Medium

15. (Unsafe) Use of Predictable Variables

o Description: Whether the contract contains any randomness variable,

but its value can be predicated.
o Result: PASSED
o Severity: Medium

16. Transaction Ordering Dependence

o Description: Whether the final state of the contract depends on the

order of the transactions.
o Result: PASSED
o Severity: Medium

17. Deprecated Uses

o Description: Whether the contract use the deprecated tx.origin to

perform the authorization.
o Result: PASSED
o Severity: Medium

Semantic Consistency Checks

o Description: Whether the semantic of the white paper is different from
the implementation of the contract.

o Result: PASSED
o Severity: Critical

Smart Contract Audit

Conclusion

In this audit, we thoroughly analyzed WALKINGBETWEENWORLDS’s Smart
Contract. The current code base is well organized but there are promptly some low-
level issues found in the first phase of Smart Contract Audit.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an
early, but exciting stage of development. To improve this report, we greatly
appreciate any constructive feedbacks or suggestions, on our methodology, audit
findings, or potential gaps in scope/coverage.

Smart Contract Audit

About eNebula Solutions

We believe that people have a fundamental need to security and that the use of

secure solutions enables every person to more freely use the Internet and every other

connected technology. We aim to provide security consulting service to help others

make their solutions more resistant to unauthorized access to data & inadvertent

manipulation of the system. We support teams from the design phase through the

production to launch and surely after.

The eNebula Solutions team has skills for reviewing code in C, C++, Python, Haskell,

Rust, Node.js, Solidity, Go, and JavaScript for common security vulnerabilities &

specific attack vectors. The team has reviewed implementations of cryptographic

protocols and distributed system architecture, including in cryptocurrency,

blockchains, payments, and smart contracts. Additionally, the team can utilize

various tools to scan code & networks and build custom tools as necessary.

Although we are a small team, we surely believe that we can have a momentous

impact on the world by being translucent and open about the work we do.

For more information about our security consulting,

please mail us at – contact@enebula.in

mailto:contact@enebula.in

